网上有关“平面度误差的评定方法有几种?”话题很是火热,小编也是针对平面度误差的评定方法有几种?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
平面度误差的评定方法有:三远点法、对角线法、最小二乘法和最小区域法等四种。1、三远点法:是以通过实际被测表面上相距最远的三点所组成的平面作为评定基准面,以平行于此基准面,且具有最小距离的两包容平面间的距离作为平面度误差值。2、对角线法:是以通过实际被测表面上的一条对角线,且平行于另一条对角线所作的评定基准面,以平行于此基准面且具有最小距离的两包容平面间的距离作为平面度误差值。3、最小二乘法:是以实际被测表面的最小二乘平面作为评定基准面,以平行于最小二乘平面,且具有最小距离的两包容平面间的距离作为平面度误差值。最小二乘平面是使实际被测表面上各点与该平面的距离的平方和为最小的平面。此法计算较为复杂,一般均需计算机处理。4、最小区域法:是以包容实际被测表面的最小包容区域的宽度作为平面度误差值,是符合平面度误差定义的评定方法。三、平面度误差的数据处理由上述平面度误差的测量方法和评定方法阐述可知,测量方法和评定方法不同,数据处理的方法也不相同。选定某一测量方法和评定方法,可能直接得到实际表面的平面度误差值,如采用打表法进行测量,再用对角线法评定其平面度误差,则可不必进行数据处理,可直接得到测量结果;采用水平仪进行测量,则不论采用何种评定方法,均需进行数据处理;而对于任何一种测量方法,如果按最小区域法来评定其平面度误差,都必须进行数据处理才能得到平面度误差值。另外,还应注意到,测量基准面和评定基准面一般是不重合的(或说不平行的)。尤其是符合最小条件的评定基准面的位置是按实际表面的形状确定的,不可能在测量之前预先确定。且测量所得到的原始数据中的最大值与最小值并不一定是实际表面上的最高点和最低点,故在数据处理之前,一般应根据所测数据对实际表面的形状特征进行大致分析,初步判断实际表面是凸形、凹形、鞍形或其它复杂形态,以免过多重复计算花费时间,必要时还可画出其数据空间分布示意图,进而确定其评定基准面。数据处理方法有:解析法、坐标变换法和投影作图法等。其中坐标变换法对数据处理带有一般性,应该熟练掌握。坐标变换法是将被测实际表面上各点对测量基准面的坐标值,转换为与评定方法相对应的评定基准面的坐标值。由于评定基准面的旋转可使各测得值产生不同的变化,从而获得不同的评定结果。坐标变换法又称为旋转法,其实质是在测得数据上加上一对应的等差数列。当采用最小区域法评定实际表面的平面度误差时,最小区域法判别准则亦应熟练掌握,才能在数据处理之前做到胸有成竹,避免过多重复计算而少走弯路。平面度最小区域的判别准则是:由两平行平面包容实际被测要素时,实现至少三点或四点接触,且具有下列形式之一者,即为最小区域。最大值与最小值可直接得到被测表面的平面度误差值为:f1= 90-(-50)=140?m。
知道四条边和两条对角线的长度,也就是说知道任意两三角形的三条边长,运用三角形的公式是可以求出三角形的面积的,之后相加就行了,
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:p=(a+b+c)/2
关于“平面度误差的评定方法有几种?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是周丽号的签约作者“思真”
本文概览:网上有关“平面度误差的评定方法有几种?”话题很是火热,小编也是针对平面度误差的评定方法有几种?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...
文章不错《平面度误差的评定方法有几种?》内容很有帮助